실험을 통해서 얻어진 데이터를 분석하여 객관적인 정보를 추출하고 어떤 조치를 유도하는 결론을 내기 위해서는 통계적인 방법들을 이용해야 합니다. 만약 실험이 올바르게 설계되었고 그 설계에 따라 과오 없이 수행되었다면 데이터를 분석하는 일은 그렇게 어렵지 않습니다.

 

데이터의 분석은 가급적 그래프화하여 시각화하는 것이 좋은데 이를 통하여 반응특성치의 변동 상황이나 최적조건의 위치도 짐작할 수 있습니다. 한편, 통계적 분석에 들어가기에 앞서서 데이터가(실험이) 관리상태하에서 얻어졌는지, 그리고 오차가 가정을 만족하는지를 먼저 검토해보는 것이 바람직하며, 데이터를 취하는데 실패하였거나 이상치로 판정되어 결측치가 발생한 경우에 대해서 그 처리 방법에 따라 조치를 취해 주는 것또한 좋습니다. 또한, 이 단계에서는 데이터의 모형의 타당서에 대한 검토도 중요합니다.

 

일반적으로 데이터 분석에서 많이 사용하는 통계적 기법들은 그래프, 분산분석, 통계적 검정과 추정, 상관분석과 회귀분석 등이 있습니다.

 

6시스마의 도구로서 널리 이용되고 있는 Minitab이나 사회과학자료분석에 많이 사용되는 SPSS/PC+, SAS 등의 통계 처리 프로그램들은 이러한 분석 방법들을 지원해 주고 있으며, 자료에서 발생된 결측치도 쉽게 처리할 수 있으므로 이러한 도구들을 활용하는 것이 보다 효율적일 것입니다.

 

데이터의 해석은 각 요인 효과의 크기, 정도의 상세와 효과의 추정, 최적조건 결정의 3 단계로 성립됩니다. 분산분석은 계산 과정이 다소 번거롭기는 하지만 그 계산 없이는 각 요인의 기여율에 대한 계산이 불가능하며, 또 추정 효과에 관한 그래프의 신뢰한계도 계산할 수 없게 되므로 반드시 거쳐야 합니다.

 

그러나 결론에 이르기 위해서는 분산분석보다는 효과를 도시한 그래프 쪽이 더 중요하며, 그 그래프로부터 수준에 의한 비용의 차이와 요인 효과의 양쪽을 살펴서 최적의 조건을 찾아내는 것이 중요합니다.

 

+ Recent posts